Full Discretization of Semilinear Stochastic Wave Equations Driven by Multiplicative Noise

نویسندگان

  • Rikard Anton
  • David Cohen
  • Stig Larsson
  • Xiaojie Wang
چکیده

A fully discrete approximation of the semi-linear stochastic wave equation driven by multiplicative noise is presented. A standard linear finite element approximation is used in space and a stochastic trigonometric method for the temporal approximation. This explicit time integrator allows for mean-square error bounds independent of the space discretisation and thus do not suffer from a step size restriction as in the often used Störmer-Verletleap-frog scheme. Furthermore, it satisfies an almost trace formula (i. e., a linear drift of the expected value of the energy of the problem). Numerical experiments are presented and confirm the theoretical results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic evolution equations with multiplicative Poisson noise and monotone nonlinearity

Semilinear stochastic evolution equations with multiplicative Poisson noise and monotone nonlinear drift in Hilbert spaces are considered‎. ‎The coefficients are assumed to have linear growth‎. ‎We do not impose coercivity conditions on coefficients‎. ‎A novel method of proof for establishing existence and uniqueness of the mild solution is proposed‎. ‎Examples on stochastic partial differentia...

متن کامل

Continuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity

Semilinear stochastic evolution equations with multiplicative L'evy noise are considered‎. ‎The drift term is assumed to be monotone nonlinear and with linear growth‎. ‎Unlike other similar works‎, ‎we do not impose coercivity conditions on coefficients‎. ‎We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. ‎As corollaries of ...

متن کامل

Backward uniqueness of stochastic parabolic like equations driven by Gaussian multiplicative noise

One proves here the backward uniqueness of solutions to stochastic semilinear parabolic equations and also for the tamed Navier–Stokes equations driven by linearly multiplicative Gaussian noises. Applications to approximate controllability of nonlinear stochastic parabolic equations with initial controllers are given. The method of proof relies on the logarithmic convexity property known to hol...

متن کامل

Thin-Film Flow Influenced by Thermal Noise

We study the influence of thermal fluctuations on the dewetting dynamics of thin liquid films. Starting from the incompressible Navier-Stokes equations with thermal noise, we derive a fourth-order degenerate parabolic stochastic partial differential equation which includes a conservative, multiplicative noise term—the stochastic thin-film equation. Technically, we rely on a long-wave-approximat...

متن کامل

Numerical solution of second-order stochastic differential equations with Gaussian random parameters

In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2016